
www.manaraa.com

Graduate Theses and Dissertations Iowa State University Capstones, Theses and
Dissertations

2011

Intelligent Tutoring System Authoring Tools for
Non-Programmers
Shrenik Devasani
Iowa State University

Follow this and additional works at: https://lib.dr.iastate.edu/etd

Part of the Computer Sciences Commons

This Thesis is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital
Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University Digital
Repository. For more information, please contact digirep@iastate.edu.

Recommended Citation
Devasani, Shrenik, "Intelligent Tutoring System Authoring Tools for Non-Programmers" (2011). Graduate Theses and Dissertations.
10315.
https://lib.dr.iastate.edu/etd/10315

http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Fetd%2F10315&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Fetd%2F10315&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd?utm_source=lib.dr.iastate.edu%2Fetd%2F10315&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Fetd%2F10315&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Fetd%2F10315&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd?utm_source=lib.dr.iastate.edu%2Fetd%2F10315&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=lib.dr.iastate.edu%2Fetd%2F10315&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd/10315?utm_source=lib.dr.iastate.edu%2Fetd%2F10315&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digirep@iastate.edu

www.manaraa.com

Intelligent tutoring system authoring tools for non-programmers

by

Shrenik Devasani

A thesis submitted to the graduate faculty

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Co-majors: Human Computer Interaction; Computer Science

Program of Study Committee:

Stephen B. Gilbert, Co-major Professor

Leslie Miller, Co-major Professor

Craig Ogilvie

Iowa State University

Ames, Iowa

2011

Copyright © Shrenik Devasani, 2011. All rights reserved.

www.manaraa.com

 ii

DEDICATED

I would like to dedicate this thesis to my parents, Ram Manohar and Bharathi, and my sister

Shravya.

www.manaraa.com

 iii

TABLE OF CONTENTS

LIST OF FIGURES vi

LIST OF TABLES vii

ABSTRACT viii

CHAPTER 1. INTRODUCTION 1
1.1 Overview 1

1.1.1 Components of an Intelligent Tutoring System 1

1.1.2 Classification of Intelligent Tutoring Systems 2
1.1.2.1 Model-tracing tutors 2

1.1.2.2 Constraint-based tutors 3
1.1.2.3 Example-tracing tutors 3

1.1.3 Benefits of Intelligent Tutoring Systems 4
1.1.4 Challenges of Authoring Intelligent Tutoring Systems 4

1.2 Authoring Tools for Intelligent Tutoring Systems 5

1.2.1 Cognitive Tutor Authoring Tools (CTAT) 5
1.2.2 Extensible Problem Specific Tutor (xPST) 7

1.3 Previous Work With xPST 9
1.3.1 xPST Authoring Study 9
1.3.2 Torque xPST Driver 10

1.3.3 Torque xPST Authoring Study 11

1.4 Research Questions 11
1.5 Thesis Organization 12

CHAPTER 2. WEB-BASED AUTHORING TOOL 14

2.1 Previous Work 14
2.2 Current Implementation 16

2.2.1 User Management 16

2.2.2 Tutor Management 16
2.2.3 Event Logging 18
2.2.4 Other Features 20
2.2.5 Testing 21

CHAPTER 3. EVALUATION OF TWO INTELLIGENT TUTORING SYSTEM

AUTHORING TOOL PARADIGMS: GRAPHICAL USER INTERFACE-BASED AND

TEXT-BASED 23

3.1 Abstract 23
3.2 Introduction 23

3.2.1 Cognitive Tutor Authoring Tools (CTAT) 24
3.2.1 Extensible Problem Specific Tutor (xPST) 25

3.3 Methods 25
3.3.1 Participants 26

www.manaraa.com

 iv

3.3.2 Materials 26
3.3.3 Procedures 27

3.4 Results 27
3.4.1 Model Analysis 28

3.4.2 Timing Data 29
3.4.3 Exit Questionnaire Data 31

3.5 Discussion and Future Work 32

CHAPTER 4. LATTICE-BASED APPROACH TO BUILDING TEMPLATES FOR

NATURAL LANGUAGE UNDERSTANDING IN INTELLIGENT TUTORING

SYSTEMS 34
4.1 Abstract 34

4.2 Introduction 34
4.3 The ConceptGrid Approach 36
4.4 The ConceptGrid Interface 39
4.5 Algorithm and Implementation 42

4.6 Results: The xSTAT Project 43
4.7 Conclusions and Future Work 46

4.8 Acknowledgement 47
4.9 Appendix 47

CHAPTER 5. AUTHORING INTELLIGENT TUTORING SYSTEMS FOR 3D GAME

ENVIRONMENTS 49
5.1 Abstract 49

5.2 Introduction 49

5.3 Previous Work 51

5.4 Design 52
5.4.1 Simulation Engine: Virtual Battlespace 2 55

5.5 Tutor Authoring Process 56
6.6 Tutor Authoring Process 59
5.7 Appendix 61

5.7.1 Background 61
5.7.2 Personalized Adaptive Training 62
5.7.3 Challenge: Easily Creating an ITS for a Synthetic Environment 64

CHAPTER 6. SUMMARY AND FUTURE WORK 65

APPENDIX A. EXTENSIONS MADE TO XPST 67

A.1 Extensions to xPST‟s Language 67

A.2 Tutoring with Physiological Data 69
A.3 Visual Feedback 70

APPENDIX B. EVALUATION OF TWO INTELLIGENT TUTORING SYSTEM

AUTHORING TOOL PARADIGMS 72

BIBLIOGRAPHY 88

www.manaraa.com

 v

ACKNOWLEDGEMENTS 97

www.manaraa.com

 vi

LIST OF FIGURES

Figure 1.1 – Behavior graph in CTAT .. 6

Figure 1.2 – xPST architecture ... 8
Figure 2.1 – Screenshot of the previous xPST web-based authoring tool 15
Figure 2.2 – Current xPST web-based authoring tool (WAT).. 17
Figure 2.3 – WAT‟s Tutor Editor ... 18
Figure 2.4 – Sample listing of errors in an xPST tutor ... 20

Figure 2.5 – Version management within the WAT ... 21
Figure 3.1 – Time spent by xPST tutor-authors .. 29

Figure 3.2 – Time spent by CTAT authors ... 30
Figure 3.3 – Average time versus problem number .. 31
Figure 4.1 – The lattice-style table-driven interface of ConceptGrid. The template

represents the concept “Rejection-Correct”, described in Table 4.2. 42

Figure 4.2 – Feedback Table ... 43
Figure 4.3 – ConceptGrid Management on WAT .. 48

Figure 5.1 – An atomic state consisting of a learner, insurgent, civilian and a bomb. 54
Figure 5.2 – An example of a hint presented to the learner: Diffuse the bomb. 55
Figure 5.3 – Just-in-time feedback in the state “NearWindow”, when the learner fails to

crouch down: You must crouch down when near a window. ... 59
Figure 5.4 – The vision for the future of personalized adaptive training. The live, virtual

and constructive training experience is determined by the training objectives, the

soldier's previous skills, and the soldier's personality and stress resilience profile. 63

www.manaraa.com

 vii

LIST OF TABLES

Table 3.1 – Scoring of tutors (maximum possible score is 6) .. 28

Table 3.2 – Average ratings by participants on a Likert scale of 1 to 5 32
Table 4.1 – Atomic checktypes used in designing a template. ... 38
Table 4.2 – Examples of concepts. Conclusion-Correct and Conclusion-Incorrect look at

the holistic response and the rest look at the sub-components of the response. 41
Table 4.3 – Results of the classification of 554 student responses using ConceptGrid 45

Table 5.1 – Possible atomic states for the scenario “ClearBuilding” 57

www.manaraa.com

 viii

ABSTRACT

An intelligent tutoring system (ITS) is a software application that tries to replicate the

performance of a human tutor by supporting the theory of “learning by doing” and providing

customized instruction to a student while performing a task within a problem domain such as

mathematics, medical diagnosis, or even game play. ITSs have been shown to improve the

performance of a student in wide range of domains. Despite their benefits, ITSs have not

seen widespread use due to the complexity involved in their development. Developing an ITS

from scratch requires expertise in several fields including computer science, cognitive

psychology and artificial intelligence. In order to decrease the skill threshold required to

build ITSs, several authoring tools have been developed.

In this thesis, I document several contributions to the field of intelligent tutoring in

the form of extensions to an existing ITS authoring tool, research studies on authoring tool

paradigms and the design of authoring tools for non-programmers in two complex domains –

natural language processing and 3D game environments.

The Extensible Problem Specific Tutor (xPST) is an authoring tool that helps rapidly

develop model-tracing like tutors on existing interfaces such as webpages. xPST‟s language

was made more expressive with the introduction of new checktypes required for answer

checking in problems belonging to domains such as geometry and statistics. A web-based

authoring (WAT) tool was developed for the purpose of tutor management and deployment

and to promote non-programmer authoring of ITSs. The WAT was used in a comparison

study between two authoring tool paradigms – GUI based and text based, in two different

problem domains – statistics and geometry.

www.manaraa.com

 ix

 User-programming of natural language processing (NLP) in ITSs is not common

with authoring toolkits. Existing NLP techniques do not offer sufficient power to non-

programmers and the NLP is left to expert developers or machine learning algorithms. We

attempted to address this challenge by developing a domain-independent authoring tool,

ConceptGrid that is intended to help non-programmers develop ITSs that perform natural

language processing. ConceptGrid has been integrated into xPST. When templates created

using ConceptGrid were tested, they approached the accuracy of human instructors in scoring

student responses.

3D game environments belong to another domain for which authoring tools are

uncommon. Authoring game-based tutors is challenging due to the inherent domain

complexity and dynamic nature of the environment. We attempt to address this challenge

through the design of authoring tool that is intended to help non-programmers develop game-

based ITSs.

www.manaraa.com

 1

CHAPTER 1. INTRODUCTION

1.1 Overview

An intelligent tutoring system (ITS) is a software application that tries to replicate the

performance of a human tutor by supporting the theory of “learning by doing” and providing

personalized feedback and customized instruction to a student or a trainee while performing a

task within a problem domain such as mathematics, medical diagnosis, or even game play.

1.1.1 Components of an Intelligent Tutoring System

There are four components in an intelligent tutoring system that represent tutoring

and communication knowledge (Woolf, 2008): a domain module, a student module, a

tutoring module and communication module.

The domain module is the backbone of an ITS and consists of the domain knowledge

which represents experts‟ behavior and how they perform in the domain. It can include

definitions, skills and processes required to perform a task. The student module consists of

knowledge that represents the student‟s misconceptions, skill levels, behavior and mastery of

the domain. It also specifies how the tutor must reason about the student‟s knowledge. The

tutoring module consists of knowledge that represents teaching strategies. The

communication module consists of knowledge that represents methods for communication

between the student and the tutoring system. Examples include graphical user interfaces,

avatars, and conversational dialogue mechanisms.

www.manaraa.com

 2

1.1.2 Classification of Intelligent Tutoring Systems

Intelligent tutoring systems can be classified into 3 groups:

1. Model-tracing tutors

2. Constraint-based tutors

3. Example-tracing tutors

1.1.2.1 Model-tracing tutors

Model-tracing tutors are based on the ACT-R theory and architecture of cognition

(Anderson & Lebiere, 1998). According to the ACT-R theory, human knowledge can divided

into two kinds of representations – declarative (consisting of facts) and procedural

(consisting of productions). Procedural knowledge is formed from declarative knowledge.

A model-tracing tutor is associated with an expert model that comprises of production

rules that represent domain knowledge. Model-tracing tutors employ a process called “model

tracing” where the expert model is used to trace the student‟s actions. A model-tracing tutor

can offer feedback for every step taken by the student while solving a problem. It identifies

errors when a step taken by the student either matches a production rule that represents an

incorrect step, or fails to match any rule.

Model-tracing tutors have been successfully implemented in several domains

including college-level physics (Gertner & VanLehn, 2000; Shelby et al., 2001) and high

school algebra (K.R. Koedinger, J.R. Anderson, W.H. Hadley, & M.A. Mark, 1997).

www.manaraa.com

 3

1.1.2.2 Constraint-based tutors

Constraint-based tutors (Mitrovic, Mayo, Suraweera, & Martin, 2001) employ the

constraint-based modeling approach of student modeling. It is based on Ohlsson‟s theory of

learning from performance errors (Ohlsson, 1996). Knowledge is represented in the form of

constraints, rather than problem-solving paths. A constraint consists of three components – a

relevance condition that describes when the constraint is applicable, a satisfaction condition

that specifies additional tests and a feedback message associated with the constraint. A

constraint-based tutor is interested in the current state that the student is in, rather than what

the student has done thus far. As long as the student does not enter an incorrect state, he or

she is free to do as desired. States that are pedagogically equivalent are grouped together into

equivalence classes. All states in an equivalence class trigger the same instructional actions

by the tutor. Constraint-based modeling requires a higher level of abstraction resulting in

smaller domain models, which in turn reduces authoring effort.

Examples of constraint-based tutors include the SQL-Tutor, an ITS that supports

students learning to write SQL queries (Mitrovic & Ohlsson, 1999) and the KERMIT, an ITS

that teaches database design (Suraweera & Mitrovic, 2002).

1.1.2.3 Example-tracing tutors

Example-tracing tutors evaluate student behavior by comparing it with examples of

correct and incorrect problem-solving behavior (V. Aleven, B. M. McLaren, J. Sewall, & K.

R. Koedinger, 2009). Example-tracing tutors are capable of providing step-by-step guidance.

They can tutor on complex problems consisting of multiple correct strategies by maintaining

multiple correct interpretations of student behavior. Though example-tracing tutors are easier

www.manaraa.com

 4

to build than model-tracing tutors, it has been shown that the two types can be behaviorally

indistinguishable.

Authoring tools like CTAT and xPST can be used to develop example-tracing tutors.

1.1.3 Benefits of Intelligent Tutoring Systems

Intelligent tutoring systems have been shown to improve the performance of a student

in wide range of domains. Beal et al performed a controlled evaluation of an interactive on-

line tutoring system for high school mathematics (Beal, Walles, Arroyo, & Woolf, 2007).

They showed that students who received on-line tutoring showed improvement while

students who received regular classroom instruction showed no pre- to post-test

improvement. The AutoTutor, an ITS that simulate a human tutor by holding a conversation

with the student in natural language has shown to achieve learning gains of approximately

0.8 sigma (Graesser, Chipman, Haynes, & Olney, 2005). PAT, an algebra tutor was used in a

large scale experiment where 470 students in experimental classes using the tutor

outperformed students in comparison classes by 15% on standardized tests (K.R. Koedinger,

et al., 1997).

1.1.4 Challenges of Authoring Intelligent Tutoring Systems

Developing effective ITSs requires a good understanding of the thought processes

involved both while teaching, and while learning. It has been observed that it takes 100 hours

of development time to create 1 hour of instruction (Woolf & Cunningham, 1987). Building

intelligent tutoring systems requires expertise in several fields such as computer science,

artificial intelligence, cognitive psychology and interface design. This requirement makes

building ITSs from scratch, a time consuming and challenging process and increases the

www.manaraa.com

 5

costs of creating the ITS, limiting the number of ITSs that can be created within the various

domains.

1.2 Authoring Tools for Intelligent Tutoring Systems

The goal of an ITS authoring tool is to simply the process of building ITSs and

decrease the skill threshold for building them. Also, they enable the rapid prototyping of ITS

designs (T. Murray, 1999). Achieving these goals will help non-programmers and users who

lack computational thinking build ITSs.

Computational thinking can be defined as “the thought processes involved in

formulating problems and their solutions so that the solutions are represented in a form that

can be effectively carried out by an information-processing agent” (Wing, 2006).

Several authoring tools have been developed that are targeted specifically for non-

programmers (Blessing, Gilbert, Ourada, & Ritter, 2007; Koedinger, Aleven, Heffernan,

McLaren, & Hockenberry, 2004). When an authoring tool is intended to be used by non-

programmers, it is essential to manage the trade-off that exists between ease of use and

power, and scaffold computational thinking in the authoring tool for non-computational

thinkers.

In this section, I discuss about two authoring tools: Cognitive Tutor Authoring Tools

(CTAT) and the Extensible Problem Specific Tutor (xPST).

1.2.1 Cognitive Tutor Authoring Tools (CTAT)

The Cognitive Tutor Authoring Tools, or CTAT (Koedinger, Aleven, & Heffernan,

2003), is a tool suite that enables an instructor to add learning by doing to online courses.

www.manaraa.com

 6

CTAT supports the creation of two types of tutors: example-tracing tutors , which can be

created without programming but require problem-specific authoring, and cognitive tutors,

which require AI programming to build a cognitive model of student problem solving but

support tutoring across a range of problems.

Figure 1.1 – Behavior graph in CTAT

A CTAT tutor-author uses an interface builder to create an interface for the tutor.

Once the interface is ready, an example-tracing tutor can be developed by creating a directed,

acyclic graph called the “behavior graph” that represents the acceptable ways of solving a

problem. The links in the graph represent problem-solving actions, and the nodes represent

www.manaraa.com

 7

problem-solving states. A behavior graph can contain incorrect solution paths that reflect

incorrect problem solving behavior by the student.

1.2.2 Extensible Problem Specific Tutor (xPST)

The Extensible Problem Specific Tutor, or xPST (Blessing, Gilbert, Blankenship, &

Sanghvi, 2009), is an ITS authoring tool that helps rapidly develop example-tracing tutors on

existing interfaces such as webpages. Building tutors on existing interfaces reduces tutor-

development time, and allows the interface to be separable from the tutoring component.

The xPST System consists of three main components:

1. The xPST Engine

2. The Presentation Manager

3. The Web Authoring Tool

The xPST engine “eavesdrops” on the tutor interface and observes the student‟s

actions on the interface. The Presentation Manager gives visual feedback to the student on

the interface. The Web Authoring Tool helps tutor authors create and deploy tutors.

www.manaraa.com

 8

Figure 1.2 – xPST architecture

In order to create tutor, the author must create a cognitive model by writing an xPST

file, using the Web Authoring Tool. This model represents the procedural knowledge

necessary to correctly complete the steps involved in the task. The xPST file is a text file and

uses a simple cognitive modeling language. Each xPST file must have a sequence section, a

feedback section, and a mappings section.

In the sequence section, the author must mention the order in which steps must be

completed by the learner. The sequence section supports different connecting words like

“and”, “or” and “then”. For example, “stepA then stepB” corresponds to “Do stepA first and

then do stepB”.

In the feedback section, the author specifies the hints and just-in-time error messages

(JITs) for each step name mentioned in the sequence section. The author must also specify

the correct “answer” to each step. When the learner completes the corresponding step, it is

www.manaraa.com

 9

the equivalent of providing the correct answer to that step, and the tutor moves on to the next

step in the sequence.

Each widget on the webpage has a unique ID, which can be seen using the xPST

plugin, when the author clicks on the widget. The author must map these widgets to the step

names used in the sequence section. This section helps the tutor know whether the learner has

completed the required steps by eavesdropping on the learner‟s actions on the webpage.

1.3 Previous Work With xPST

The Extensible Problem Specific Tutor has been extended to support tutoring in 3D

game environments and studies have been conducted to show xPST has been used by authors

to build tutors on both web interfaces and game environments.

1.3.1 xPST Authoring Study

This study tested the ability of novice users of xPST to create tutors (S. Gilbert,

Blessing, & Kodavali, 2009). The purpose of the study was to examine the learning curve of

novice authors while learning to build tutors using xPST.

The study involved 10 participants. They were given access to an example tutor and a

44-minute video tutorial. Each participant was asked to build three tutors each for three

different tasks, all related to searching for a particular library database (the ACM portal). A

total of 26 tutors were developed by the 10 participants (some failed to complete all three

tutors). The tutors were scored on a scale of 1 to 5, according to the rubric used in Blessing

and Gilbert (2008). Eighteen tutors received a score of 4 or more. The time taken by the

www.manaraa.com

 10

participants to build the tutors was kept track of. The three tasks, on an average required 3.71

hours, 2.53 hours and 1.73 hours, respectively.

1.3.2 Torque xPST Driver

xPST was extended to support tutoring in 3D game environments developed using the

game engine Torque (Kodavali, Gilbert, & Blessing, 2010). The Torque xPST driver acts as a

bridge between the Torque game engine and the xPST engine to enable xPST tutoring in

games. It does the job that the Firefox plugin does while tutoring on web interfaces. The

driver eavesdrops on the game and captures events and actions done by the learner and sends

them to the xPST engine.

Torque Game Engine Advanced (TGEA) (Lloyd, 2004), a commercial off-the-shelf

game engine from GarageGames, was used as the simulation engine. TGEA supports

scripting through TorqueScript, which is similar in syntax to JavaScript. It was used in

developing both the driver and the game scenarios.

The Torque xPST driver comprises of two components – the Listener Module and the

Presentation Module. The Listener Module captures events that occur in the game and sends

them to the xPST engine. It also receives feedback that needs to presented to the learner from

the xPST engine and sends it to the Presentation Module. The Presentation Module is

involved in presenting the feedback it to the learner, which includes hints and just-in-time

error messages. The communication between the xPST Engine and the Torque xPST driver

happens through a “Dormin message”, which is a string in a specific format that contains

various attributes that describe the current state of the task, the message to be communicated,

and the action verb that determines the message‟s course of action.

www.manaraa.com

 11

1.3.3 Torque xPST Authoring Study

This study tested the ability of novice users of xPST to create tutors in 3D games (S.

B. Gilbert, Devasani, Kodavali, & Blessing, 2011). The purpose of the study was to examine

the learning curve of novice authors while learning to build tutors for 3D games, using xPST.

The study involved 10 participants, selected based on a pre-survey, that included

them only if they had a minimal amount of programming experience. They were given access

to an example tutor and a 15-minute video tutorial. Each participant was asked to build two

tutors each for two different tasks, online, over a two week period. The first task, titled

“Target Acquisition”, required the player to enter the proximity region of an enemy tower,

start communication with his base, report his location, and then issue a “Fire” command. The

second task, titled “Evacuate”, was based on a scenario consisting of three cottages with a

hostage in each of them. The player had search for the three cottages, and issue an

“Evacuate” command to each of the three occupants. The “Target Acquisition” task required

a minimum of three goalnodes, and the “Evacuate” task required a minimum of seven

goalnodes.

A total of 20 tutors were developed by the 10 participants. The average time to

complete Task A was 19.74 minutes, with a standard deviation of 9.16 minutes. The average

time to complete Task B was 13.81 minutes with a standard deviation of 6.24 minutes. The

results indicated that users with minimal programming experience could use xPST to create

tutors for 3D game environments.

1.4 Research Questions

The research work described in this thesis attempts to answer the following questions:

www.manaraa.com

 12

1. How does an intelligent tutoring system authoring tool paradigm and the

complexity of a problem domain affect the tutor-authoring process by non-

programmers in comparison with programmers?

2. Can an authoring tool that uses a GUI to facilitate use by non-programmers

enable the creation of a tutor that can accurately evaluate written textual responses

as a human instructor would manually do?

1.5 Thesis Organization

This chapter provided an introduction to the field of intelligent tutoring systems and

the challenges involved in authoring them. It has also described the Extensible Problem

Specific Tutor (xPST) and the previous work related to it. In the rest of my thesis, I

document several contributions to the field of intelligent tutoring in the form of extensions to

an existing ITS authoring tool, research studies on authoring tool paradigms and the design

of authoring tools in two complex domains – natural language processing and 3D game

environments.

Chapter 2 describes a Web-based Authoring Tool (WAT) that allows easy creation of

ITSs and their deployment on the web. It supports both learner management and tutor

management on a single platform. In Chapter 3, I describe an evaluation of two intelligent

tutoring system authoring tool paradigms: graphical user interface based and text based.

Chapter 4 is a conference paper titled “Lattice-Based Approach to Building Templates for

Natural Language Understanding in Intelligent Tutoring Systems” (Devasani, Aist, Blessing,

& Gilbert, 2011). My contribution includes the design and development of the system, and

writing major portions of the paper. Gregory Aist provided me with valuable suggestions,

www.manaraa.com

 13

especially for the user interface. Stephen Blessing provided me a corpus collected from one

of his studies, which was used to evaluate and test the accuracy of my tool. Stephen Gilbert

provided me with valuable suggestions and edited the paper. Chapter 5 is a workshop paper

titled “Authoring Intelligent Tutoring Systems for 3D Game Environments” (Devasani,

Gilbert, Shetty, Ramaswamy, & Blessing, 2011). My contribution includes the design and

development of the framework, and writing major portions of the paper. Stephen Gilbert

designed the user interface for the authoring tool. Suhas Shetty and Nandhini Ramaswamy

made valuable improvements after identifying drawbacks in my design. Stephen Blessing

provided valuable feedback and edited the paper. Chapter 6 summarizes the important

features of this thesis and describes the future work involved with the tools I have developed.

Appendix A describes various extensions to xPST that have developed in order to make it

more expressive and powerful as a computational tool, while remaining useful to non-

programmers. Appendix B contains the material relevant to the study described in Chapter 3.

www.manaraa.com

 14

CHAPTER 2. WEB-BASED AUTHORING TOOL

xPST is an ITS authoring tool that allows non-programmers to create tutors. Users

without a technical background can find the tasks of management and deployment of tutors

to be laborious. A web-based authoring tool that can take care of these issues is required and

helps in more rapid creation of ITSs. A web-based authoring tool can prove to be extremely

useful for the purposes of both maintenance and distribution of tutors that are developed

using an intelligent tutoring system authoring tool. An efficient web-based authoring tool can

manage all the resources and dependent files at a single location, thereby allowing the learner

to concentrate on the task of building tutors and developing tutoring strategies.

2.1 Previous Work

An Authoring Tool was built to help authors develop tutors with xPST. It was a

simple Integrated Development Environment (IDE) for authoring xPST tutors. It was

designed to serve two purposes: 1) To provide a simple, easy to use graphical user interface

(GUI) to author xPST files without installing additional software on the client computer 2)

To provide a tool to log the time spent by the author while writing the xPST file. The tool

also performs syntax checking and points out errors in the xPST file.

www.manaraa.com

 15

Figure 2.1 – Screenshot of the previous xPST web-based authoring tool

www.manaraa.com

 16

2.2 Current Implementation

The current implementation of the xPST Web-Based Authoring Tool (WAT) has

implemented several improvements over the previous version. It supports both user

management and tutor management on a single platform.

2.2.1 User Management

The Web-Based Authoring Tool supports user management in a simple manner.

Users can create and manage own accounts on the WAT.

2.2.2 Tutor Management

Once registered, users can develop, manage, and deploy their web-based xPST tutors.

Users can develop tutors over multiple sessions using the Tutor Editor, which is a part of the

WAT. When a new tutor is created, the WAT creates four files associated with the tutor -

.xpst file, .scenario file, .HTML file, and the .properties file, and links them. If needed, the

user can download the four files associated with each tutor to his computer so that he can

deploy them locally on his server.

www.manaraa.com

 17

Figure 2.2 – Current xPST web-based authoring tool (WAT)

The following process is to be followed in order to create a tutor with the WAT:

1. Create the problem interface (webpage) if it does not already exist.

2. Login to the WAT

3. Create a new tutor

4. Provide the URL to the webpage that serves as the problem interface

5. Draft an xPST file using the Tutor Editor

6. WAT creates the necessary files, links and deploys them

7. Test the tutor by clicking “Run”

www.manaraa.com

 18

Figure 2.3 – WAT’s Tutor Editor

2.2.3 Event Logging

The WAT supports logging of events that occur while an author develops a tutor. A

separate log file is created and updated for each tutor that a user creates. This feature is useful

for the purposes of data mining in research studies.

The following events are recorded by the WAT in the log file:

www.manaraa.com

 19

 TutorCreated – Time at which the tutor was created. This event is logged only

once.

 TutorOpen – Time at which the tutor was opened. This event is logged when

the tutor is created and every time the user clicks the „Edit‟ button from the

Tutor List.

 ManualSave – Time at which the tutors is saved manually. This event is

logged every time the user clicks one of the “Save”, “Save & Run”, and “Save

& Exit” buttons.

 AutoSave – The time at which the tutor was auto-saved. This happens every

20 seconds.

 xPSTEdit – This event is logged along with ManualSave or AutoSave,

provided a change has been made to the xPST file since the last ManualSave

or AutoSave (whichever occurred later).

The details of these events allow researchers to identify how long it takes to create

tutors for a particular domain. Using the details of the above events, two important measures

are calculated and recorded in the log file:

 xPSTTime – The total time spent by the user in editing the contents of the

xPST file.

xPSTTime = Σ(Xi), where Xi = value(i
th

 XpstEdit)

 TotalTime – The total duration for which the Tutor Editor was open. This

includes time spent in both editing the contents of the xPST file and testing

the tutor.

www.manaraa.com

 20

TotalTime = Σ(Xi) + Σ(Yi), where Xi = value(i
th

 ManualSave), Yi = value(i
th

AutoSave)

2.2.4 Other Features

An important feature of the WAT is the syntax checker (this is an improved and more

robust version of the syntax checker from the previous xPST authoring tool described in 2.1).

It identifies syntax errors in the xPST file, and displays all the errors along with their line

numbers and possible solutions at the bottom of the page. This feature is necessary to reduce

tutor development time since early piloting of the interface showed that novice users spend

most of their time correcting syntax errors.

Figure 2.4 – Sample listing of errors in an xPST tutor

The WAT supports Versioning, so that previous versions of the tutors are not lost.

Every time a tutor is manually saved, a new version is recorded, along with optional

comments that the user might have specified that will be associated with that version.

www.manaraa.com

 21

Figure 2.5 – Version management within the WAT

Also, the Tutor Editor automatically saves the xPST file periodically, every 20

seconds.

2.2.5 Testing

The WAT has been successfully used for two different cognitive modeling studies.

The first was called “Evaluation of WebxPST: A Browser-Based Authoring Tool for

Problem-Specific Tutors” (Blessing, Devasani, & Gilbert, 2011). A total of five tutor-

authors, two course instructors, and three undergraduate students created a total of 74 tutors

for statistics homework problems, using the WAT. The second study, titled “Evaluation of

Two Authoring Tool Paradigms: GUI Based and Text Based” (see Chapter 3), had a total of

www.manaraa.com

 22

eight tutor-authors develop a total of 16 geometry and statistics tutors. Both the studies were

conducted smoothly on the WAT and the tutor-authors reported no technical problems.

www.manaraa.com

 23

CHAPTER 3. EVALUATION OF TWO INTELLIGENT

TUTORING SYSTEM AUTHORING TOOL PARADIGMS:

GRAPHICAL USER INTERFACE-BASED AND TEXT-BASED

Manuscripts from this chapter will be submitted as a paper to the Eleventh International

Conference on Intelligent Tutoring Systems. (2012).

Shrenik Devasani, Stephen Gilbert, Stephen Blessing

3.1 Abstract

We describe an evaluation of two intelligent tutoring system authoring tool

paradigms, graphical user interface-based and text-based in two domains, statistics and

geometry. We conducted a study with 16 tutor-authors divided into 2 groups (programmers

and non-programmers). Our results showed that the GUI-based approach provides a much

lower bar for entry when compared to the text-based approach. However, the difference in

tutor-authoring time between the two approaches reduces as the tutor-authors gain experience

using the respective authoring tools.

3.2 Introduction

Authoring an intelligent tutoring system from scratch is a challenging task since it

requires expertise in several fields including cognitive science, computer science and

pedagogy. An authoring tool tries to lower the skill threshold required for developing ITSs

and also enable their rapid development (T. Murray, 1999).

www.manaraa.com

 24

When an authoring tool is being designed, there are several design trade-offs involved

because many of the design decisions that lead to an authoring tool result from conflicting

trade-offs. For example, increasing the power of an authoring tool might come at the cost of

its ease of use. In this paper, we try to evaluate the effects of the trade-offs involved in the

design of GUI-based and text-based authoring tools.

Studies have been conducted to identify the advantages and disadvantages of visual

programming (Whitley, 1997). Visual representations have shown to be beneficial when the

size or complexity of the problem grows (Day, 1988; Polich & Schwartz, 1974). On the

other hand, visual representations use space-saving techniques which cause low screen

density, when compared to textual representations, and therefore will not be practical for

large problems (Whitley, 1997).

For the experiment, we chose CTAT (Koedinger, et al., 2003) and the Extensible

Problem Specific Tutor, or xPST (Blessing, et al., 2009) as examples of GUI-based and text-

based authoring tools respectively. Both CTAT and xPST can be used to develop example

tracing tutors (V. Aleven, B. McLaren, J. Sewall, & K. R. Koedinger, 2009), for both single

strategy problems and multiple strategy problems. We chose two problem domains of

varying complexity, from an authoring point of view – statistics and geometry. Statistics

problems are sequential in nature and generally have a single solution path. Problems in

geometry could have multiple strategies and therefore multiple solution paths.

3.2.1 Cognitive Tutor Authoring Tools (CTAT)

CTAT supports the development of example-tracing tutors through a technique called

“programming by demonstration” (Nevill-Manning, 1993). Once the interface for a problem

www.manaraa.com

 25

has been built, the tutor-author proceeds by demonstrating all possible solution paths to the

problem. The demonstration automatically creates a directed, acyclic graph called the

“behavior graph”, which represents the acceptable ways of solving a problem. The feedback

associated with the individual states in the problem is added to the tutor through CTAT‟s

GUI.

Though CTAT is capable of supporting the development of both cognitive tutors and

example-tracing tutors, we consider only the example-tracing tutor development feature of

CTAT in this study.

3.2.1 Extensible Problem Specific Tutor (xPST)

xPST is an ITS authoring tool that helps rapidly develop example-tracing tutors on

existing interfaces such as webpages. An example-tracing tutor is built using xPST by

writing a text file that describes the order in which individual steps in the problem are to be

completed by the learner and the answers and feedback associated with each step.

xPST‟s syntax was designed such that it was simple enough for non-programmers to

use, and also powerful enough for experienced users to build tutors rapidly.

3.3 Methods

The experiment involved 2 independent variables – authoring tool paradigm (text-

based or GUI-based) and problem domain (statistics or geometry). Programming level

(programmer or non-programmer) was the moderating variable.

www.manaraa.com

 26

3.3.1 Participants

Participants were recruited through an email advertisement, fliers on campus and

word-of-mouth. Sixteen participants completed the study successfully. Each participant had

to take a pre-survey that asked them questions about their experience with computer

programming. A participant was classified as a “programmer” if he or she had taken two or

more programming courses and as a “non-programmer”, otherwise. The participants were

divided into eight groups formed from all possible combinations of programming level

(programmer or non-programmer), authoring tool paradigm (text-based or GUI-based) and

problem domain (statistics or geometry). Before starting the study, the participants were

asked to complete and sign an informed consent form online.

3.3.2 Materials

Each participant was given the task of building three tutors using a specific authoring

tool (CTAT or xPST) for a specific domain (statistics or geometry). All three problems were

of the same complexity, with their solutions having six subgoals or steps.

The participants were provided with the link to the study webpage that had all the

resources and material required to complete their tasks. The study webpage contained a brief

introduction the field of intelligent tutoring systems. The training material on the webpage

included a video tutorial that gave a demo of the step-by-step procedure to be followed while

creating a tutor, for a sample problem as well as a text tutorial. We estimate the total training

time to be about 1-2 hours.

CTAT tutor-authors used Remote Desktop to log in remotely to a Microsoft Windows

computer which had CTAT v2.10.0 and Adobe Flash Player 10 pre-installed. xPST tutor-

www.manaraa.com

 27

authors logged in to the xPST Web-based Authoring Tool (WAT, described in Chapter 2)

using Mozilla Firefox 3 or higher. The problems for which the tutors were to be built were

predefined and the interfaces for the problems were provided to the participants. CTAT tutor-

authors could access the problem interfaces (.swf files) on the remote machine provided to

them. xPST tutor-authors were provided with the links to the webpages that contained the

problem interfaces.

3.3.3 Procedures

Each participant was asked to create three tutors, as if he or she was a teacher for that

subject preparing homework problems for his or her students. Instructions were provided for

each problem that included the problems‟ solutions and the types of feedback the tutor must

give for each problem. The tutors created by the participant were meant to monitor each step

in the corresponding problem. For each problem, the tutor had to provide exactly one hint.

Also, for each tutor overall, there was one message that gives feedback for a specific error

that a student might make.

The entire study was conducted online. The participants were allowed to complete

their tasks over multiple sessions at their own pace, over a two-week period. After successful

completion of their tasks, the participants received a compensation of $40 in cash and a

chance to win $149 in cash through a lottery.

3.4 Results

We had a total of eight groups with two participants each. Each participant built a

total of three tutors, leading to the creation of 48 tutors in all.

www.manaraa.com

 28

3.4.1 Model Analysis

Each tutor was scored on two criteria – “Solution Path” and “Error-Specific

Feedback.” A tutor was given a score of 1 under “Solution Path” if it correctly provided

tutoring for all possible solution paths in the problem (including providing hints on each

step), 0.5 if it correctly provided tutoring for one of the possible solution paths and 0 if it

provided completely incorrect tutoring. A tutor received a score of 1 under “Error-Specific

Feedback” if it correctly provided the required error-specific feedback and 0, otherwise.

The cumulative scores have been shown in Table 3.1. Since a group had two

participants who built three tutors each, the maximum score possible is six. The model

analysis shows that all the tutor-authors who were classified as programmers built tutors that

provided accurate tutoring. Tutor-authors who were classified as non-programmers built

tutors that displayed accurate tutoring behavior for statistics problems, but slightly less

accurate behavior for geometry problems.

Table 3.1 – Scoring of tutors (maximum possible score is 6)

Authoring Tool Problem

Domain

Programmer /

Non-programmer

Solution

Path

Error-Specific

Feedback

xPST Statistics Programmer 6 6

 Non-Programmer 6 6

 Geometry Programmer 6 6

 Non-Programmer 4.5 5

CTAT Statistics Programmer 6 6

 Non-Programmer 6 6

 Geometry Programmer 6 6

www.manaraa.com

 29

 Non-Programmer 4 6

3.4.2 Timing Data

The total time spent in creating each tutor was logged separately. The time spent in

creating an xPST tutor was calculated as described in 2.2.3. The CTAT logger logs the time

and date when the tutor-author interacts with the GUI. This total time measure for both

CTAT and xPST includes the time spent in authoring the tutor as well as testing it.

Figure 3.1 shows the histogram of the time spent in minutes by the xPST tutor-

authors, in building tutors for all three problems.

Figure 3.2 shows the histogram of the time spent in minutes by the CTAT tutor-

authors, in building tutors for all three problems. The log file for the second tutor created by

one of the participants (P11) was unavailable.

Figure 3.1 – Time spent by xPST tutor-authors

www.manaraa.com

 30

Figure 3.2 – Time spent by CTAT authors

 Figure 3.3 shows the learning curve for the tutor-authors. It is interesting to see that

after the tutor-authors gained experience building three tutors, the average time required in

creating a tutor by the groups xPST–Statistics (19 min), CTAT–Statistics (18.75 min) and

CTAT–Geometry (18 min) were almost equal. However, the average time required in

creating a tutor for the third geometry problem using xPST (52 min) was much higher than

the average time required using CTAT (18 min). Geometry problems involve multiple

solution strategies. The results suggest that subtle ordering of steps is more convenient in

CTAT because of CTAT‟s visual representation of the strategies on the behavior graph.

www.manaraa.com

 31

Figure 3.3 – Average time versus problem number

3.4.3 Exit Questionnaire Data

All 16 participants answered a short questionnaire (though it was optional). The

questionnaire asked them for their feedback about the authoring tool they had used to create

tutors. They were asked to rate the ease of use and power of the authoring tool on a Likert

scale of 1 to 5, and to answer open-ended questions about the tool's strengths, weaknesses,

and suggestions for improvement. One common theme that emerged from the open-ended

questions was that both xPST and CTAT are easy to author once understanding how they

work. Some quotations are included below that illustrate these:

“Very easy to use once you get a feel for the syntax.” – P7 (xPST – Non-

Programmer)

“Once we understand how to create the tutor then the tool is very simple to use.” –

P14 (CTAT – Programmer)

0

10

20

30

40

50

60

70

80

90

Problem 1 Problem 2 Problem 3

A
ve

ra
ge

 T
im

e
in

 M
in

u
te

s

xPST - Statistics

xPST - Geometry

CTAT - Statistics

CTAT - Geometry

www.manaraa.com

 32

 The average ratings from the exit questionnaire have been summarized in Table 3.2.

Both xPST and CTAT were rated slightly higher by programmers for their ease of use when

compared to non-programmers.

Table 3.2 – Average ratings by participants on a Likert scale of 1 to 5

Authoring Tool Programmer /

Non-programmer

Ease of Use Power

xPST Programmer 4.25 3.50

 Non-Programmer 3.50 3.25

CTAT Programmer 4.75 4.00

 Non-Programmer 3.50 4.00

3.5 Discussion and Future Work

We used a between-subjects experimental design to prevent order effects and

contamination as the participants moved between authoring systems and domains. We felt

that the comparisons between levels of the independent variables would be compromised

having if the variables were to be within-subject. We cannot claim that our results are

statistically significant, likely because of the small sample size.

The graphical user interface-based approach allows for easier learning initially and a

lower bar for entry. However, once a tutor is built, it can be time consuming to edit. One of

the advantages of the text-based approach is that debugging and editing an existing tutor may

be easier since the entire code is available to the tutor-author at one glance. We conclude by

proposing a hybrid authoring tool that exploits the synergy between the graphical user

interface-based paradigm and the text-based paradigm. Much like common integrated

development environments (IDEs) such as Adobe Dreamweaver and Microsoft Visual

www.manaraa.com

 33

Studio, the ideal authoring tool would have a “design” tab which tutor-creation through a

GUI and a “source” tab that supports the editing of the tutor directly through code. We

expect such a tool would cater to programmers and non-programmers, experienced and non-

experienced.

www.manaraa.com

 34

CHAPTER 4. LATTICE-BASED APPROACH TO BUILDING

TEMPLATES FOR NATURAL LANGUAGE

UNDERSTANDING IN INTELLIGENT TUTORING SYSTEMS

Research described in this chapter was published in the Fifteenth Conference on Artificial

Intelligence in Education, Auckland. (2011).

Shrenik Devasani, Gregory Aist, Stephen Blessing, Stephen Gilbert

4.1 Abstract

We describe a domain-independent authoring tool, ConceptGrid, which is intended to

help non-programmers develop intelligent tutoring systems (ITSs) that perform natural

language processing. The approach involves the use of a lattice-style table-driven interface to

build templates that describe a set of required concepts that are meant to be a part of a

student‟s response to a question, and a set of incorrect concepts that reflect incorrect

understanding by the student. The tool also helps provide customized just-in-time feedback

based on the concepts present or absent in the student‟s response. This tool has been

integrated and tested with a browser-based ITS authoring tool called xPST.

4.2 Introduction

Interpreting textual responses from students by an Intelligent Tutoring System (ITS)

is essential if it can come close to matching the performance of a human tutor, even in

domains such as Statistics and Physics, since the use of language makes the learning process

www.manaraa.com

 35

more natural. Natural language has the advantage of being easy to use for the student, as

opposed to learning new formalisms.

Over the past decade, studies have been conducted that confirm the importance of using

language in both traditional learning environments and in intelligent tutoring systems. Chi et

al. (Chi, Bassok, Lewis, Reimann, & Glaser, 1989; Chi, De Leeuw, Chiu, & LaVancher,

1994) have showed that eliciting self-explanations enhances deeper learning and

understanding of a coherent body of knowledge that generalizes better to new problems.

Aleven et al. (Aleven, Koedinger, & Cross, 1999) conducted studies with the PACT

Geometry Tutor in which students who provided explanations to solution steps showed

greater understanding in the post-test, compared to students who did not provide

explanations.

Many ITSs have successfully incorporated natural language processing. The

CIRCSIM Tutor (Glass, 2001) is a language based ITS for medical students that uses word

matching and finite state machines to process students‟ natural language input. Rus et al.

(Rus & Graesser, 2006) have described an approach of evaluating answers by modeling it as

a textual entailment problem. Intelligent tutoring systems such as the AutoTutor (Graesser et

al., 2000) and Summary Street (Steinhart, 2001) use Latent Semantic Analysis (LSA)

(Landauer, Foltz, & Laham, 1998) to evaluate student answers, a technique that uses

statistical computation and is based on the idea that the aggregate of all the word contexts in

which a word appears determines the similarity of meaning of words to each other. The

problem with LSA is that it does not encode word order and it cannot always recognize

negation. Another problem with LSA is that it scores students‟ responses only based on how

www.manaraa.com

 36

well it matches the ideal answer, and cannot point out what exactly is wrong with an

incorrect response.

Though ITSs today use a variety of techniques to provide support for natural

language understanding, user-programming of NLP in ITSs is not common with authoring

toolkits. The various techniques described here do not give sufficient power to non-

programmers as the NLP is left to expert developers or to machine learning algorithms, and

the user is more likely to focus on tutoring strategies. Our approach addresses these issues.

4.3 The ConceptGrid Approach

ConceptGrid is intended to be used by tutor-authors with little or no programming

experience. The most crucial aspect about developing an authoring tool that can be used by

non-programmers is managing the trade-off between its ease of use and its expressive power.

Keeping this in mind, ConceptGrid has been designed such that its ease of use and

expressiveness lie between that of simple word matching approaches and complex

approaches such as those that use complex machine learning algorithms.

The tutor-author develops the natural language understanding component for a tutor

by breaking down the expected response to a question into specific concepts. The author then

builds templates that describe a set of required concepts (that are meant to be a part of

student‟s response to a question) and a set of incorrect concepts (that reflect incorrect

understanding by the student). Every template is mapped to a single user-defined concept

name. Since a student can describe a single concept in various forms, several templates can

be used to describe different representations of a single concept, in order to recognize and

www.manaraa.com

 37

provide feedback to a wider range of student responses (both correct and incorrect). Thus,

there is a one-to-many relationship between concepts and templates.

A template consists of one or more atomic checktypes, or check functions, that

evaluate a student's input. These particular atomic checktypes are based on well-known

algorithms and distance measures (Hamming, 1950; Levenshtein, 1966; Porter, 1980). The

word "atomic" refers to the fact that these checktypes can be applied to a single word only.

The set of atomic checktypes have been described in Table 4.1.

Apart from these atomic checktypes, we have two more checktypes that help make

the template more expressive: Any(n1, n2) and Not(n, „direction‟, word_list). The checktype

"Any" matches any sequence of words that is at least n1 words long and at most n2 words. It

helps account for words that are not explicitly accounted for using the other checktypes. The

"Not" checktype takes care of negation. It makes sure that the n words appearing to the left or

right (specified by „direction‟) of the word following the checktype do not match the words

mentioned in "word_list".

The checktypes Synonym and Stemmer can be nested within other atomic checktypes

to make them more powerful. Levenshtein(Synonym(„interface‟),1), for example, captures

the idea that any synonym of the word "interface" is fine, even if it has a spelling mistake.

When the student misses out on a subset of the required concepts, or mentions a

subset of incorrect concepts, customized feedback can be given that points out the issue.

www.manaraa.com

 38

Table 4.1 – Atomic checktypes used in designing a template.

Checktype Description

Exact(word_list) Returns true if a literal character-by-character word

match with any of the words in word_list is found

Almost(word_list) Returns true if a literal match, after ignoring vowels,

with any of the words in word_list is found

Levenshtein(n, word_list) Returns true if the least Levenshtein distance between a

word in word_list and matched word is <= n

Hamming(n, word_list) Returns true if the least Hamming distance between a

word in word_list and matched word is <= n

Soundex(word_list) Returns true if a Soundex match with any of the words

in word_list is found

Synonym(word_list) Returns true if an exact match with any of the words in

word_list or its synonyms from WordNet (Fellbaum,

1998) is found

Stemmer(word_list) Returns true if a literal match with the stem of the

matched word, with any of the words in word_list is

found (uses Porter Stemmer)

www.manaraa.com

 39

4.4 The ConceptGrid Interface

The web-based interface is designed to allow the tutor-author to create templates that

describe both required and incorrect concepts, and mention the customized just-in-time

feedback that needs to be given to the students.

To simplify the process of constructing templates, we have a lattice-style table-driven

interface for entering the template‟s checktypes and the corresponding parameters (Figure

4.1). A new template is created either by entering the dimensions of the table or by entering a

sample response, from which a table is created and initialized. The table consists of a

sequence of multi-level drop-down menus that represent the checktypes. The multiple levels

help the author nest different checktypes. Each drop-down menu is associated with a specific

number of textboxes that store the parameters associated with it. Each drop-down menu has

several textboxes below it that store the contents of the parameter "word_list" associated with

the corresponding checktype. The contingent approach of having the parameters dependent

on the specific checktype provides a mild form of just-in-time authoring help. The user can

navigate through the table just like a numerical spreadsheet and add or delete new rows and

columns.

There are two sets of templates; the first describes required concepts and the second

describes incorrect ones. Multiple templates can be mapped onto a single concept. Consider

the following question in a statistics problem: “Based on your results, what do you conclude

about the conditions of the music?” Let us assume that the correct answer to the question is

"Reject the null hypothesis. There is a significant difference in memory recall between the

rock music and no music conditions."

www.manaraa.com

 40

Some of the concepts that can be defined for the sample response mentioned above

are described in Table 4.2.

The tutor-author then can design a ternary truth table called the Feedback Table

(Figure 4.2) where he or she can enter the feedback that is to be given to the students, based

on the truth values of the concepts: true – concept present (green check), false – concept

absent (red X), or don‟t care (yellow dash). The author enters the values of the truth table

through tri-state checkboxes. Feedback can be entered for both the absence of required

concepts and presence of incorrect ones.

The Feedback Table helps provide feedback in a simple manner for seemingly

complicated issues, such as an inconsistent statement (the last row of the Feedback Table in

Figure 4.2) in the example discussed. Through its GUI, the Feedback Table achieves the

computational equivalence of providing customized feedback by checking for truth

conditions of the concepts using relational operators and conditional programming.

There is a provision to create user-defined variables that can be used while building

checktypes or mentioning the feedback. This approach helps re-use templates for similar

questions. The author can also enter a set of stop words that will be filtered out from the

student‟s response prior to being processed.

Once the templates are designed and the feedback tables are filled, the author can test

the templates with sample student responses. The output of the test mentions if the student‟s

response has matched the required concepts. If a match is not found, then it displays the

feedback associated with that response. It also displays the truth values of all the concepts

defined by the author.

www.manaraa.com

 41

Table 4.2 – Examples of concepts. Conclusion-Correct and Conclusion-Incorrect look at

the holistic response and the rest look at the sub-components of the response.

Concept Name Description

Rejection-Correct Matches responses that correctly mention whether the

null hypothesis has to be rejected or not

Rejection-Incorrect Matches responses that incorrectly mention whether

the null hypothesis has to be rejected or not

Significance-Correct Matches responses that correctly mention the

significance of the result of the statistical test

Significance-Incorrect Matches responses that incorrectly mention the

significance of the result of the statistical test

Ind-Variable-Mention Matches responses that explicitly mention the

independent variable (e.g. type of music)

Dep-Variable-Mention Matches responses that explicitly mention the

dependent variable (e.g. memory recall)

Conclusion-Correct Matches responses that have the correct conclusion of

the statistical test

Conclusion-Incorrect Matches responses that have the incorrect conclusion

of the statistical test

www.manaraa.com

 42

4.5 Algorithm and Implementation

The implicit sequencing in the lattice approach means that the resulting complex

checktypes are finite parsers. That is, progress through the lattice corresponds to progress

left-to-right in processing the input.

The templates are represented internally as and-or trees. The algorithm involves a

combination of recursion and memoization to efficiently process the input. Since the

algorithm might need to backtrack many times, memoization helps speed up the processing

by having function calls avoid repeating the calculation of results for previously processed

inputs.

Our tool has been integrated with the Extensible Problem Specific Tutor (xPST) - an

open source authoring tool that is intended to enable non-programmers to create ITSs on

existing websites and software (Blessing, et al., 2009). Though xPST is a text-based

authoring tool, its syntax is not very-code like. ConceptGrid has been customized to generate

"code" that is compatible with xPST‟s syntax, based on the author's templates and Feedback

Table, which can be then be inserted into any xPST file.

Figure 4.1 – The lattice-style table-driven interface of ConceptGrid. The template

represents the concept “Rejection-Correct”, described in Table 4.2.

www.manaraa.com

 43

Figure 4.2 – Feedback Table

4.6 Results: The xSTAT Project

The research question for this paper is whether ConceptGrid could enable an

instructor to create a tutor that would score students' free response answers as accurately as

he or she manually did. At this point, the question is purely a feasibility issue: can it be done

with the ConceptGrid tool? We tested this issue as a part of the xSTAT project at University

of Tampa, dedicated to developing an intelligent homework helper for statistics students

(Maass & Blessing, 2011).

For the xSTAT effort, six authors (3 instructors and 3 undergraduates) created

multiple tutors each for college level statistics problems. The problems contained real-world

scenarios with actual data, followed up by several questions for the student to answer. Each

of the problems had a question at the end that asked students to enter the conclusion of the

statistics test. To assess these problems, 6 were chosen out of the total pool of 74 and given

to students as homework problems. All problems were solved on-line using a standard web

browser. Half of the students received feedback on their answers via the xPST intelligent

tutor (i.e., answers were marked as either correct or incorrect, and hints and just-in-time

www.manaraa.com

 44

messages were displayed), and half did not (i.e., these students simply filled out the web-

based form). It is worth noting that these tutors were created without ConceptGrid, so that

authors had to explicitly enter the "xPST code" that represents the templates without a

graphical user interface. Also, in the absence of visualization through the Feedback Table,

subsets of missing and incorrect concepts had to be explicitly mentioned. This non-lattice

approach was not very usable by non-programmers. This difficulty motivated the creation of

the ConceptGrid lattice approach, which is computationally equivalent and designed to be

much more usable by non-programmers.

In all, 41 students solved a total of 233 instances of the six problems across the

homework. We built a corpus after collecting all student responses to the end question (both

those with tutoring and without). The corpus had 554 unique responses to this final

conclusion question across the six homework problems. This corpus includes multiple

incorrect responses by the same student to the same problem if they were in the tutored

condition.

These responses were manually scored by an instructor and a teaching assistant based

on the presence or absence of the concepts defined in Table 2. Then, one of the authors

attempted to use ConceptGrid to produce templates that would score the 554 responses

similar to those manual scores. The result of that work contained a total of 10 templates

common to all six problems, to cover all concepts, except “Ind-Variable-Mention” and “Dep-

Variable-Mention”. The concepts “Ind-Variable-Mention” and “Dep-Variable-Mention”

required a template each that was unique to each of the six problems. In all, there were 22

templates across all six problems. A template, on an average consisted of 4 checktypes.

www.manaraa.com

 45

Since the manner in which a template tries to match a student‟s response – a sequence

of words is comparable to the manner in which a regular expression matches a string, it

might seem that the results have a lot of false negatives. But, since this approach tries to

"understand" responses by looking for smaller concepts and key phrases with the help of

checktypes rather than literal word matching, it is much more expressive. The results in

Table 3, where we report the number of false positives, false negatives and the accuracy, the

fraction of correct classifications, confirm this observation. The last column shows the values

of Cohen‟s Unweighted Kappa (Cohen, 1960), which is a measure of the degree to which the

human grader and ConceptGrid concur in their respective classifications.

Table 4.3 – Results of the classification of 554 student responses using ConceptGrid

Concept False Positives False Negatives Accuracy Kappa

Rejection-Correct 1 34 0.9368 0.8657

Rejection-Incorrect 6 5 0.9801 0.9217

Significance-Correct 1 7 0.9856 0.9662

Significance-Incorrect 12 1 0.9765 0.8890

Ind-Variable-Mention 1 3 0.9928 0.9853

Dep-Variable-Mention 4 3 0.9874 0.9733

Conclusion-Correct 0 24 0.9567 0.8614

Conclusion-Incorrect 6 0 0.9892 0.9727

www.manaraa.com

 46

4.7 Conclusions and Future Work

We have described ConceptGrid, a tool that is intended to help non-programmers

develop ITSs that perform natural language processing. It has been integrated into an ITS

authoring tool called xPST. We tested it as a part of the xSTAT project and were able to

approach the accuracy of human instructors in scoring student responses.

We would like to conduct an empirical evaluation study that helps demonstrate that

the ConceptGrid tool, a part of xPST, is actually feasible for non-programmers to use on a

variety of tasks, as we have done for xPST's core authoring tool (S. Gilbert, et al., 2009). The

study will also help provide an insight into the time required by a tutor-author to develop

templates for particular question types.

Currently, ConceptGrid does not support a dialogue between the student and tutor as

do CIRCSIM (Evens et al., 2001) and AutoTutor (Graesser, et al., 2005). It only evaluates

student responses and gives just-in-time feedback. To support more extensive knowledge-

construction dialogues, ConceptGrid responses would need to provide information required

by the dialogue manager.

Our current approach is non-structural, i.e., it is focused on words and numerical

analysis, rather than grammar and logic. The advantage with this approach is that it is simple

for non-programmers to use, and is very effective in domains such as statistics where the

student responses are expected to follow a general pattern. In addition, the ConceptGrid

approach is domain-independent, one of its biggest advantages.

ConceptGrid could be extended to be structural as well, but that achievement might

come at the cost of usability by non-programmers. To include structural matching, either the

templates could nest by invoking other templates, or the atomic checktypes could include

www.manaraa.com

 47

some checktypes that invoked structural matching. For nested concepts, we could define a

concept and then use it within more complex concepts, in the following manner.

GreaterThan(X,Y) = X – "bigger" or "more" or "greater" – "than" – Y

WellFormedConclusion = GreaterThan("weight of the log", "weight of the twig")

This way, the framework can be extended to more powerful natural language

processing using a similar approach to the processing that context-free grammars allow.

Alternately, the set of ConceptGrid atomic checktypes could be extended to enable

structurally-oriented checktypes that would match a nonterminal from a context-free

grammar, such as an NP with "twig" as the head in a syntactically oriented grammar, or

match the semantics of a section of the utterance.

4.8 Acknowledgement

This work is done with the support of the U.S. Air Force Office of Scientific

Research.

4.9 Appendix

ConceptGrid has been integrated within the web-based authoring Tool (WAT)

described in Chapter 3. The WAT now supports the management of ConceptGrids by users.

Also, the WAT logs events that occur while an author develops ConceptGrids. This data will

be useful for the purpose of data mining in research studies.

www.manaraa.com

 48

Figure 4.3 – ConceptGrid Management on WAT

www.manaraa.com

 49

CHAPTER 5. AUTHORING INTELLIGENT TUTORING

SYSTEMS FOR 3D GAME ENVIRONMENTS

Research described in this chapter was published in the Authoring Simulation and Game-

based Intelligent Tutoring Workshop at the Fifteenth Conference on Artificial Intelligence in

Education, Auckland. (2011).

Shrenik Devasani, Stephen Gilbert, Suhas Shetty, Nandhini Ramaswamy, Stephen Blessing

5.1 Abstract

We describe the design of an authoring tool that is intended to help non-programmers

develop game-based intelligent tutoring systems. The tutor-building approach involves the

creation of states, both atomic and complex, that help model physical and cognitive states

respectively. The tutor-author specifies the parameters associated with each entity in the

scenario for each state. The resulting tutor dynamically updates the learner model and

automatically assesses the performance of the learner and provides customized feedback.

5.2 Introduction

Game-based intelligent tutoring uses the synergy that exists between digital games

and intelligent tutoring systems (ITSs) by combining the high degree of exploration and

autonomy that characterizes digital games and the dynamic adaptive instruction supported by

ITSs (Thomas & Young, 2009). Recent efforts that use such an approach include an

environment used by middle schoolers to learn science concepts (Rowe, Shores, Mott, &

www.manaraa.com

 50

Lester, 2010) and another used by soldiers to learn language and culture issues (Johnson,

2009).

The last few decades have seen a change in the nature of teaching in modern

universities (Laurillard, 1993). Research has shown that active engagement in the learning

process by students leads to better learning, higher retention of information and development

of skills such as logical thinking and independent decision making. Tutoring using games

might provide these benefits as they manage to maintain the user's attention with a feeling of

immersion within a simulated environment. Games are a form of reward- based learning and

encourage active learning. There has been an increased interest by learning scientists in

incorporating games and gaming principles into teaching and learning (Kirriemuir &

McFarlane, 2004).

ITS researchers have begun exploring how games can be used in intelligent tutors. In

some domains, games may be the only possible means of simulating and practicing real

world problems. Simulation games are being used extensively in the military for teaching

pilots to fly as well as for training on combat scenarios that would otherwise be extremely

dangerous and expensive to train in the field (R.H. Stottler & Vinkavich, 2000). With the use

of simulated environments, aggressive game play can help players relax and balance their

aggression (Bensley & Van Eenwyk, 2001).

Several game-based ITSs have been developed and customized for military training

(W. R. Murray, 2006; E. Remolina, S. Ramachandran, R. Stottler, & W. R. Howse, 2004).

Yet, authoring tools that allow non-programmers to develop them are uncommon. Authoring

of game-based tutors is challenging due to the inherent domain complexity, the dynamic

nature of the environment, the different kinds of feedback required, and the interactions

www.manaraa.com

 51

between various non-player entities in the game. In this current work we explore an addition

to a tutoring architecture that we have created to enable that architecture to not only tutor in

such 3D environments but also to allow for the easy authoring of scenarios and instruction

within those environments by non-programmers.

5.3 Previous Work

The Extensible Problem Specific Tutor (xPST) is an open source ITS authoring tool

that supports tutoring within game-engine based synthetic environments (S. B. Gilbert, et al.,

2011). It uses a simple modeling language that promotes authoring by non-programmers. The

tutor-author must list the sequence of steps to be performed by the trainee and then describe

the feedback associated with each step. We conducted a study that demonstrated that users

with minimal programming experience can use xPST to create basic tutors for 3D game

environments.

The drawback of this prior approach is that the model created by the tutor-author

consisted of goalnodes, or steps to be performed by the learner, rather than states in the

game. Though the use of goalnodes makes the tutor-building process very simple and usable

by non-programmers, we found that goalnodes by themselves do not have sufficient power to

encapsulate all information required to model a dynamic environment. Due to the existence

of non-player entities and events that can happen without the trainee‟s knowledge, the

game‟s state can change even without any action being performed by the trainee. The goal of

the present work is to eliminate this weakness with the prior approach and to design a method

for creating a tutor within 3D environments that allows for the full range of possibilities that

exist within such environments, but is still not overly burdensome on the tutor-author.

www.manaraa.com

 52

5.4 Design

In the present work, we are designing a system that will support soldiers practicing

realistic squad-level scenarios. One such scenario that we will use as an example here, is

approaching and entering a building that may contain a hostage, an insurgent, and a bomb

that needs to be defused.

We have conceptualized the tutoring model associated with such a scenario as

composed of a collection of author-defined states. A state can be atomic or complex. An

atomic state represents the physical state of the real world (game scenario with all its entities)

at a given instance of time. It is described by the values of the properties of the entities in the

scenario (Figure 5.1). Every property can take a special value called “don‟t care” (DC).

When a property is assigned this value, it does not come into play when two states are being

compared. A complex state is described as a pattern of one or more atomic states, defined

using regular expressions. It can be used to represent a cognitive state and also helps model

events that happen over time. For example, a trainee enters the complex state “S1 (S2|S3)*

S4” when he enters S1, moves to S2 or S3, zero or more times and then finally enters S4. In

the example scenario, this might correspond to starting at a location outside the building,

approaching the building along a low wall, and then finally entering the building. Although

the requirement of regular expressions in the modeling of a complex state makes the system

less usable by non-programmers, the power that they offer justifies the trade-off.

Every state (both atomic and complex) is classified as one of these five types: “Start

State” (represents the state when the scenario is loaded), “Goal State” (represents a state

where the objective of the scenario is achieved), “Failed State” (represents a state where the

game is lost, and there is no way back for the learner), “IntermediateCorrect” (represents a

www.manaraa.com

 53

correct intermediate state) and “IntermediateIncorrect” (represents an incorrect intermediate

state).

In addition to the five states described above, a tutor-author can define a

“ResponseState” that can be tied to any of the five kinds of states. When the learner enters a

particular state, the Response State that is tied to it describes the activities that will be

performed automatically by non-player entities in the scenario. For example, when the

learner approaches an enemy building, a ResponseState can send reinforcements by forcing

existing insurgents to move to the entrance of the building, or spawn new insurgents.

There are three kinds of feedback associated with each state – hints, just-in-time

messages and prompts. Hints are displayed when help is requested by the learner (Figure 2).

Just-in-time messages are displayed when the learner makes a common mistake that the tutor

recognizes. Prompts represent feedback that is neither requested nor based on incorrect

events. They are displayed when the learner enters a particular state.

When the learner is in a complex state, he would also be in an atomic state. Also, it is

possible for the current state of the game to match more than one complex state, when a

larger complex state encapsulates smaller ones. For example, the complex state “(S1 S2)*

S3” encapsulates the complex state “S2 S3”. Hence, the tutor-author is allowed to assign

priorities to each state. Feedback associated with the state with a higher priority is presented

first.

Time and speed are critical aspects in military training. The authoring tool allows the

dynamic creation and updating of multiple counter variables, in order to track the time spent

by the learner in performing specific activities. Counters can be created, started, paused or

reset, as required, when the learner enters or leaves a particular state. The values of these

www.manaraa.com

 54

counters can be used while checking for specific conditions before giving just-in-time

feedback. The values of these counters can also be used as pre-conditions for entering a state

and post-conditions for leaving a state.

The tutor maintains a learner model by continuously tracking the skills of the learner.

Based on the tasks involved in the scenario, the tutor is associated with a skill set, mapped to

skill variables. Every state can be tied numerically to one or more skill variables. When the

learner enters a particular state or performs an action, the values of the corresponding skill

variables are updated accordingly. For example, a skill variable called “Accuracy” can be

defined that keeps track of the percentage of accurate shots fired by the learner. Also, the

number of hints or just-in-time error messages the learner receives in a particular state can

affect the values of the skill variables.

Figure 5.1 – An atomic state consisting of a learner, insurgent, civilian and a bomb.

www.manaraa.com

 55

Figure 5.2 – An example of a hint presented to the learner: Diffuse the bomb.

5.4.1 Simulation Engine: Virtual Battlespace 2

We are using Virtual Battlespace 2 (VBS2), a commercial-off-the-shelf, three-

dimensional military simulator, based on the game engine Real Virtuality, to develop

simulations. VBS2 offers realistic battlefield simulations and delivers a synthetic

environment for training teams in arms operations and emergency response procedures. It

provides user-defined mission scenarios and real-time scenario management facilities. A

learner views the virtual environment from the first-person perspective and can move,

interact, and operate just as he or she would, in real life.

Similar to the architecture described in our previous work at creating games-based

ITSs [10], we have a Tutor Engine, a Listener module and a Presenter module. The Listener

module keeps track of the current state of the game by querying the parameters of all the

www.manaraa.com

 56

entities in the scenario. This information is passed on to the Tutor Engine over the network,

which matches the current state with author-defined states. The Tutor Engine then sends the

appropriate tutoring feedback to the Listener module, which is then presented to the learner

through the Presenter module.

Using the simulation engine, scenarios can be pre-defined and the tutor-author can

concentrate solely on the task of tutor development and tutoring strategies. The biggest

advantage of this architecture is that it can be extended to other game engines such as Unity

and BigWorld, by modifying just the Listener and Presenter modules, and retaining the core

Tutor Engine.

5.5 Tutor Authoring Process

The first step is to create the scenario using the VBS2 Mission Editor, which is a

component of VBS2. This involves placing entities in a scenario and giving them unique IDs.

The names of the properties of each entity in the scenario are defined, along with the possible

values that they can take. Next, locations in the scenario that would be of interest from a

tutoring point of view, such as buildings, are defined.

Once the scenario is ready, the tutor-author can start defining states and design the

tutoring strategy. Consider the simple example scenario, “ClearBuilding”, consisting of the

learner located outside Building 5 (B5) and an insurgent, a civilian and a bomb, all located in

B5. In order to successfully complete the mission, the learner must do the following:

1. Run towards the nearest wall

2. Approach B5, staying close to the wall at all times

a. Crouch, if near a window

b. Enter the door

3. Kill the insurgent

4. Evacuate the building

www.manaraa.com

 57

5. Defuse the bomb

Table 5.1 describes some of the states that could be defined while designing the

tutoring model for a tutor for the above scenario.

Table 5.1 – Possible atomic states for the scenario “ClearBuilding”

Entity Property Start NearWindow InsurgentDead Diffused PlayerDead

 StateType Start Intermediate Intermediate Goal Failed

Learner IsAlive true true true true false

 Location !B5 window DC DC DC

 Action DC DC DC DC DC

Insurgent IsAlive true true false false DC

 Location B5 DC DC DC DC

 Action DC DC DC DC DC

Civilian IsAlive true true true true DC

 Location B5 B5 DC !B5 DC

 Action DC DC DC DC DC

Bomb Diffused false false false true DC

 Exploded false false false false DC

 Location B5 DC DC DC DC

Apart from the atomic states defined in Table 5.1, we can define a complex state

“LearnerConfused”, represented by the regular expression “(Start NearWindow){3, }”. This

state represents the learner being in a confused state of mind in which he continuously

www.manaraa.com

 58

switches between the states Start and NearWindow, three or more times. Here, the complex

state “LearnerConfused” can be assigned a higher priority than the atomic state

“NearWindow”.

When the tutor is deployed, the tutor engine continuously queries the parameters of

all the entities in the scenario using the unique IDs given to them during the scenario building

process. The engine tries to match the current state in the game with an author-defined

atomic state. The frequency at which the current state is updated depends on the number of

entities in the scenario and the number of states defined by the tutor-author. The tutor engine

maintains a stack that stores all the atomic states visited by the learner in last in, first out

order, called “History”. When it observes a state transition, it adds the current state to the

History. Though the engine continuously updates the current state of the game, it is added to

the top of the stack only if it notices a state transition. The History helps recognize complex

states that the learner might be in, by finding matches between the author-defined complex

states (which are regular expressions) and the components of the History that end with the

stack top. The time spent by the learner in a state is also recorded.

www.manaraa.com

 59

Figure 5.3 – Just-in-time feedback in the state “NearWindow”, when the learner fails to

crouch down: You must crouch down when near a window.

6.6 Tutor Authoring Process

We have described the design of an authoring tool that helps a tutor-author think

intuitively while creating a tutor for a synthetic environment. The approach helps model

complex tutoring strategies, especially when several non-player entities and objects exist in

the scenario. It is interesting to note that the tutor-author need not define state transitions

(unlike finite-state automata), since the current state of the game is continuously updated and

matched with author-defined states. The ability of a tutor-author to define a property value of

an entity as a “don‟t care” helps alleviate a possible explosion in the number of states, many

www.manaraa.com

 60

of which might be unobservable to both the learner and the tutor-author. Also, though the

number of complex states in a realistic environment might reach infinite proportions, the

tutor-author needs to define only a subset of the possible states for which he or she wishes to

provide appropriate feedback.

Once the authoring tool is completely developed, we would like to conduct an

empirical evaluation study, similar to the one described in (S. B. Gilbert, et al., 2011) that

demonstrates that the tool is actually feasible for non-programmers to build tutors for game

scenarios.

In (Devasani, Gilbert, et al., 2011), as a proof of concept, we described how xPST has

been adapted to provide support for tutoring on web interfaces, based in part on real-time

physiological data. This can be extended to game-based tutors as well, where stress is a

major factor that affects a learner‟s performance. Variables associated physiological signals

such as the electrocardiogram signal, the heart rate signal and the heart rate variability signal

can be used as parameters while defining states in the cognitive model of a tutor.

We would like to further simplify the task of building tutors by employing a

technique known as “programming by demonstration” (Nevill-Manning, 1993). The tutor-

author can build states by demonstrating the task. At any given instance of time during the

demonstration, the tutor-author can record the atomic state at that instance, rather than

explicitly listing out the values of the parameters, and then specify the feedback associated

with that state. The set of complex states can be defined explicitly at a later point in time.

This approach will help save a considerable amount of time by giving the tutor-author a head

start, compared to having to start from scratch.

www.manaraa.com

 61

When multiple learners are involved in a scenario performing collaborative tasks, a

Trainer Observation System can prove to be very handy. It can provide the trainer with useful

insight through auto-generated statistics and data visualization features that reflect the

performance of the learners, both as a team, and as individuals.

We also plan to design a Learning Management System (LMS) that stores a

collection of scenarios and numerical values of the skill variables required for those tasks. As

a learner completes tasks in a scenario, the LMS can offer further scenarios according to the

learner‟s strengths and weaknesses, as reflected in the learner model.

5.7 Appendix

Research described in this section was published in the Twentieth Conference on Behavior

Representation in Modeling and Simulation, Sundance. (2011).

Stephen Gilbert, Shrenik Devasani, Sateesh Kodavali, Stephen Blessing

5.7.1 Background

The military has used simulated environments and computer assisted instruction since

the 1950s. Most recently, warfighters participate in live, virtual, and constructive training

missions, which means the some fighters are in a field or urban practice site with BB guns or

laser rifles ("live"), some are in simulators of Humvees or aircraft cockpits ("virtual") and

some are playing serious games with virtual environments against computer-generated

enemies ("constructive"). (Gorman, 1991)

There has been much study of how much simulation fidelity is required for good

training transfer (Andrews, Carroll, & Bell, 1995; Castner et al., 2007), and whether the

www.manaraa.com

 62

simulation can induce a sense of presence, or immersion (Dede, 2009; Lessiter, Freeman,

Koegh, & Davidoff, 2001; Stanney, 2002). Clark Aldrich continues to be enthusiastic about

their potential for training (Aldrich, 2009). In some domains, simulation games may be the

only possible means of simulating and practicing real world problems. Simulations are being

used extensively in the military for teaching pilots to fly as well as for training on combat

scenarios that would otherwise be extremely dangerous and expensive to train in the field (R.

H. Stottler, 2000).

However, we suggest that the future of effective training lies not in the fidelity of the

synthetic environment and virtual entities, but in the relevance of the feedback received by

the learner. The ideal training environment (see Figure 5.4) will offer real-time adaptive

training that offers personalized feedback and scenario customization based not only on

trainees' behavior in the scenario but also on their skill sets upon entering the training and on

their personal profiles, e.g., information about their personalities and their physiological

responsiveness to stress, both of which affect performance (Beilock, 2010). Adapting training

based on both performance and the trainee's stress response is critical to accurate

personalized feedback.

5.7.2 Personalized Adaptive Training

The idea of personalized adaptive training embodies two concepts from the learning

sciences. The first is adaptive testing or tailored testing, used, for example, by the

Educational Testing Service on standardized tests such as the GRE to offer students harder

questions when they answer correctly and easier questions when they choose incorrectly

www.manaraa.com

 63

(Thissen & Mislevy, 2000). The key principle is that the system adapts itself based on the

learner's performance.

Figure 5.4 – The vision for the future of personalized adaptive training. The live, virtual

and constructive training experience is determined by the training objectives, the

soldier's previous skills, and the soldier's personality and stress resilience profile.

A system that not only tracks a learner's performance but also attempts to offer the

learner useful feedback based on his or her mistakes is called an intelligent tutoring system

(ITS). This is the second characteristic of the personalized adaptive training approach. ITSs

have a cognitive model of an expert's domain knowledge that is used to identify patterns of

learner behavior (model tracing) and give appropriate hints or corrective feedback. A

cognitive model of algebra, for example, would know that students frequently forget the

negative sign when solving equations, and would be able to say appropriately, "You might

check to see if you've forgotten a negative sign somewhere…" Similarly, the Nintendo Wii

www.manaraa.com

 64

Fit game system could be considered a simplistic ITS, since it tracks your skills and offers

feedback such as "You're leaning too far to the left."

ITSs have been demonstrated to have effective in a variety of school knowledge

domains, such as algebra, geometry, and economics (Anderson, Conrad, & Corbett, 1989; K.

R. Koedinger, J. R. Anderson, W. H. Hadley, & M. A. Mark, 1997; Ritter, Kulikowich, Lei,

McGuire, & Morgan, 2007; VanLehn et al., 2005), resulting in up to a 30% improvement in

standardized test scores (Franklin & Graesser, 1996) and learning time reductions (Corbett,

2001).

5.7.3 Challenge: Easily Creating an ITS for a Synthetic Environment

 ITSs have also been created and customized for a variety of military synthetic

environments (SEs) (W. R. Murray, 2006; E. Remolina, S. Ramachandran, R. H. Stottler, &

W. R. Howse, 2004; R. H. Stottler, 2000; R. H. Stottler, Fu, Ramachandran, & Jackson,

2001) and Livak, et al created a more generalized tutoring approach using Unreal

Tournament (Livak, Heffernan, & Mover, 2004). But what is still missing is 1) a more

generic ITS authoring tool that could easily create ITSs for multiple SEs using modular

abstraction from the SEs themselves, 2) an ITS protocol that leverages physiological data,

and 3) an easy-to-use authoring tool for ITSs that could be used by military trainers with no

programming experience.

www.manaraa.com

 65

CHAPTER 6. SUMMARY AND FUTURE WORK

This chapter summarizes the research work done related to the questions raised in 1.4,

and proposes future work related to xPST and ConceptGrid.

The research related to the first question, “How does an intelligent tutoring system

authoring tool paradigm and the complexity of a problem domain affect the tutor-authoring

process by non-programmers in comparison with programmers?”, involved an evaluation

study of two authoring tools, CTAT (GUI-based) and xPST (text-based). Statistics and

geometry were chosen as the two problem domains. A total of 16 participants were divided

into eight groups formed from all possible combinations of programming level (programmer

or non-programmer), authoring tool paradigm (text-based or GUI-based) and problem

domain (statistics or geometry). Each participant authored a total of three tutors. The results

showed that the GUI-based approach provided a lower bar for entry in comparison with the

text-based approach. However, the difference in tutor-authoring time between the two

approaches reduced as the tutor-authors gained experience using the respective authoring

tools. After the tutor-authors gained experience building three tutors, the average time

required in creating a tutor for a statistics problem for both CTAT (18.75 min) and xPST (19

min) were almost equal. However, the average time required in creating a tutor for the third

geometry problem using xPST (52 min) was much higher than the average time required

using CTAT (18 min). Geometry problems involve multiple solution strategies. The results

suggest that subtle ordering of steps, required in complex domains is more convenient with a

GUI-based authoring tool.

www.manaraa.com

 66

 We addressed the second research questions, “Can an authoring tool that uses a GUI

to facilitate use by non-programmers enable the creation of a tutor that can accurately

evaluate written textual responses as a human instructor would manually do?” by developing

a domain independent authoring tool, ConceptGrid, which is uses a lattice-style table driven

interface that is intended to facilitate use by non-programmers. The approach involves the

use of the interface to build templates that describe a set of required concepts that are meant

to be a part of a student‟s response to a question, and a set of incorrect concepts that reflect

incorrect understanding by the student. We tested ConceptGrid by having a tutor-author use

ConceptGrid to produce 22 templates that were meant to score responses to six open ended

questions about conclusions to statistical tests. When these templates were tested against a

corpus of 554 unique responses to the six questions, they approached the accuracy of a

human instructor who manually graded the responses.

It will be interesting to design and evaluate a hybrid authoring tool that exploits the

synergy between the graphical user interface-based paradigm and the text-based paradigm by

having a “design” tab for the purpose of tutor development through a GUI and a “source” tab

that helps edit a tutor directly through code, like in most IDEs.

We plan to do an empirical evaluation study of ConceptGrid.by having non-

programmer participants develop ConceptGrids for open-ended questions. Such a study will

help provide insight into ConceptGrid‟s usability by non-programmers.

www.manaraa.com

 67

APPENDIX A. EXTENSIONS MADE TO XPST

This appendix describes the extensions that have been made to xPST in order to offer

tutor-authors more power and also to improve the tutoring experience of students. For a

detailed documentation of xPST and its syntax, please visit http://code.google.com/p/xpst/.

A.1 Extensions to xPST’s Language

xPST‟s language has been made more expressive with the introduction of new

checktypes, or evaluation functions, that are used by a tutor-author to check the validity of

students‟ answers. The previous set of checktypes was not powerful enough to build tutors

for problems in domains such as geometry and statistics.

The new checktypes incorporated into the xPST framework have been described

below:

 Abs("a") - Checks if the absolute value of the entered answer equals "a".

e.g.: JIT {v == Abs("1")}: "Cannot be +/-1";

 Round("a") - Checks if the rounded entered answer equals "a".

e.g.: answer: Round("a");

 Floor("a") - Checks if the floor of the entered answer equals "a".

e.g.: answer: Floor("a");

 Ceil("a") - Checks if the ceiling of the entered answer equals "a".

e.g.: answer: Ceil("a");

http://code.google.com/p/xpst/

www.manaraa.com

 68

 IsRange("[]","a","b") - Checks if the entered answer is inside the interval

["a","b"]. The other variants of this checktype are Range("()", "a", "b"),

Range("[)", "a", "b") and Range("(]", "a", "b").

e.g.: answer: IsRange("[)","a","b");

 IsNotRange("[]","a","b") - Checks if the entered answer is outside the interval

["a","b"]. The other variants of this checktype are Range("()", "a", "b"),

Range("[)", "a", "b") and Range("(]", "a", "b").

e.g.: answer: IsNotRange("()","a","b");

 IsAbsRange("[]","a","b") - Checks if the absolute value of the entered answer

is inside the interval ["a","b"]. The other variants of this checktype are

IsAbsRange("()", "a", "b"), IsAbsRange("[)", "a", "b") and IsAbsRange("(]",

"a", "b").

e.g.: answer: IsRange("[)","a","b");

 IsNotAbsRange("[]","a","b") - Checks if the absolute value of the entered

answer is outside the interval ["a","b"]. The other variants of this checktype

are IsNotAbsRange ("()", "a", "b"), IsNotAbsRange("[)", "a", "b") and

IsNotAbsRange("(]", "a", "b").

e.g.: answer: IsNotRange("()","a","b");

Adapting xPST to support tutoring on math problems, particularly statistics, required

the creation of several functions used for answer-checking. These new checktypes were used

in the development of xSTAT (Maass & Blessing, 2011), an intelligent homework helper for

students solving college level statistics problems.

www.manaraa.com

 69

A.2 Tutoring with Physiological Data

xPST has been extended to provide support for tutoring based on physiological data.

This extension has been developed as a proof of concept, for web interfaces. This can be

extended to game-based tutors as well. An xPST tutor-author can offer customized just-in-

time feedback based on the values of physiological signals related to stress and arousal. We

modeled our physiological simulation based on a physiological monitoring device called

FlexComp that returns the electrocardiogram signal (EKG), the heart-rate signal (the heart

rate in beats per minute) and the heart rate variability signal (measures how the heart rate

varies over time). When the values of these signals are combined with the value of the blood

pressure, this data can be useful for identifying trainee stress, e.g. when approaching the end

of the competition time of a time-based test. When a trainee is attempting to complete a

scenario, tasks that cause high stress could be identified, and the trainee could be asked to

practice more of such tasks. Also, trainees who are identified as high-responders to stress

might be assigned to less stressful duties longer term.

This extension of xPST for tutoring with physiological data is still in its early stages.

We have demonstrated the use of heart rate signals while tutoring on a timed web-based

college statistics assignment, giving different kinds of just-in-time feedback depending on

whether time is running out and depending on whether stress levels are higher when learners

made mistakes. This extension work will continue for an ongoing project at Iowa State led by

Nir Keren and Warren Franke analyzing the effect of stress on firefighters during immersive

CAVE (Cave Automated Virtual Environment)-based learning.

www.manaraa.com

 70

Figure A.1 – Screenshot of an xPST prototype giving feedback based on heart rate

during a statistics problem. "Stress" in this prototype is used loosely.

A.3 Visual Feedback

Tutors built with the previous versions of xPST could not implicitly provide positive

and negative feedback to the learners. The tutors built with xPST were incapable of

providing positive feedback, and negative feedback was possible only if the tutor-author

explicitly defined just-in-time error messages.

The current extension provides visual feedback, both positive and negative. When a

subgoal (Blessing, et al., 2009) is completed, a green check mark is placed next to the widget

www.manaraa.com

 71

tied to the subgoal, and when an incorrect answer is provided to a goalnode, a red X-mark is

(see Figure A.1) placed next to the widget tied to the goalnode.

7
1

www.manaraa.com

 72

APPENDIX B. EVALUATION OF TWO INTELLIGENT

TUTORING SYSTEM AUTHORING TOOL PARADIGMS

This appendix contains the material relevant to the study described in Chapter 3

Figure B.1 – Advertisement for recruiting participants

www.manaraa.com

 73

Figure B.2 – Pre-survey form

www.manaraa.com

 74

Figure B.3 – Informed consent document

www.manaraa.com

 75

Figure B.4 – Exit questionnaire

www.manaraa.com

 76

Figure B.5 – Study webpage for xPST tutor-authors (1/2)

www.manaraa.com

 77

Figure B.6 – Study webpage for xPST tutor-authors (2/2)

www.manaraa.com

 78

Figure B.7 – Study webpage for CTAT tutor-authors (1/2)

www.manaraa.com

 79

Figure B.8 – Study webpage for CTAT tutor-authors (2/2)

www.manaraa.com

 80

Figure B.9 – Geometry Problem 1

www.manaraa.com

 81

Figure B.10 – Geometry Problem 2

www.manaraa.com

 82

Figure B.11 – Geometry Problem 3

www.manaraa.com

 83

Figure B.12 – Statistics Problem 1

www.manaraa.com

 84

Figure B.13 – Statistics Problem 2

www.manaraa.com

 85

Figure B.14 – Statistics Problem 3

www.manaraa.com

 86

Figure B.15 – Instructions to create an xPST tutor (text tutorial)

www.manaraa.com

 87

Figure B.16 – Instructions to create a CTAT tutor (text tutorial)

www.manaraa.com

 88

BIBLIOGRAPHY

Aldrich, C. (2009). The complete guide to simulations and serious games. San Franscisco:

Pfeiffer.

Aleven, V., Koedinger, K. R., & Cross, K. (1999). Tutoring answer explanations fosters

learning with understanding. Paper presented at the Proceedings of Artificial

Intelligence in Education, AIED ‟99.

Aleven, V., McLaren, B., Sewall, J., & Koedinger, K. R. (2009). A new paradigm for

intelligent tutoring systems: Example-tracing tutors. International Journal of

Artificial Intelligence in Education, 19, 105-154.

Aleven, V., McLaren, B. M., Sewall, J., & Koedinger, K. R. (2009). A new paradigm for

intelligent tutoring systems: Example-tracing tutors. International Journal of

Artificial Intelligence in Education, 19(2), 105-154.

Anderson, J. R., Conrad, F. G., & Corbett, A. T. (1989). Skill acquisition and the LISP tutor.

Cognitive Science, 13, 467–505.

Anderson, J. R., & Lebiere, C. (1998). The atomic components of thought: Erlbaum.

Andrews, D. H., Carroll, L. A., & Bell, H. H. (1995). The future of selective fidelity in

training devices. Educational Technology, 35(6), 32-36.

Beal, C. R., Walles, R., Arroyo, I., & Woolf, B. P. (2007). On-line tutoring for math

achievement testing: A controlled evaluation. Journal of Interactive Online Learning,

6(1), 43-55.

Beilock, S. (2010). Choke: What the secrets of the brain reveal about getting It right when

you have to. NY, NY: Free Press.

www.manaraa.com

 89

Bensley, L., & Van Eenwyk, J. (2001). Video games and real-life aggression: Review of the

literature. Journal of Adolescent Health.

Blessing, S. B., Devasani, S., & Gilbert, S. B. (2011). Evaluation of WebxPST: A browser-

based authoring tool for problem-specific tutors. Paper presented at the Proceedings

of the Fifteenth Conference on Artificial Intelligence in Education, Auckland.

Blessing, S. B., Gilbert, S., Blankenship, L., & Sanghvi, B. (2009). From SDK to xPST: A

new way to overlay a tutor on existing software.

Blessing, S. B., Gilbert, S., Ourada, S., & Ritter, S. (2007). Lowering the bar for creating

model-tracing intelligent tutoring systems. Paper presented at the Proceedings of the

13th International Conference on Artificial Intelligence in Education.

Castner, A. K., Chukhman, I. A., Colbert, E. J., Dale, M. E., Lewis, B. Y., & Zaret, D. R.

(2007). An agent-supported simulation framework for metric-aware dynamic fidelity

modeling. Paper presented at the Proceedings of the 2007 Spring Simulation

Multiconference.

Chi, M. T. H., Bassok, M., Lewis, M. W., Reimann, P., & Glaser, R. (1989). Self-

explanations: How students study and use examples in learning to solve problems.

Cognitive science, 13(2), 145-182.

Chi, M. T. H., De Leeuw, N., Chiu, M. H., & LaVancher, C. (1994). Eliciting self-

explanations improves understanding. Cognitive science, 18(3), 439-477.

Cohen, J. (1960). A coefficient of agreement for nominal scales. Educational and

Psychological Measurement, 20(1), 37-46.

Corbett, A. T. (2001). Cognitive computer tutors: Solving the two-sigma problem. Paper

presented at the Conference of User Modeling, Sonthofen, Germany.

www.manaraa.com

 90

Day, R. S. (1988). Alternative representations. The Psychology of Learning and Motivation:

Advances in Research and Theory, 22, 261-305.

Dede, C. (2009). Immersive interfaces for engagement and learning. Science, 323(5910), 66-

69.

Devasani, S., Aist, G., Blessing, S. B., & Gilbert, S. B. (2011). Lattice-based approach to

building templates for natural language understanding in intelligent tutoring systems.

Paper presented at the Proceedings of the Fifteenth Conference on Artificial

Intelligence in Education, Auckland.

Devasani, S., Gilbert, S. B., Shetty, S., Ramaswamy, N., & Blessing, S. B. (2011). Authoring

intelligent tutoring systems for 3D game environments. Paper presented at the

Proceedings of the Authoring Simulation and Game-based Intelligent Tutoring

Workshop at the Fifteenth Conference on Artificial Intelligence in Education,

Auckland.

Evens, M. W., Chang, R. C., Lee, Y. H., Shim, L. S., Woo, C. W., Zhang, Y., et al. (2001).

CIRCSIM-Tutor: An intelligent tutoring system using natural language dialogue.

Paper presented at the Proceedings of the Midwest Artificial Intelligence and

Cognitive Science Conference, Oxford, OH.

Fellbaum, C. (1998). WordNet: An electronic lexical database: The MIT press.

Franklin, S., & Graesser, A. (1996). Is it an agent, or just a program? A taxonomy for

autonomous agents Paper presented at the Third International Workshop on Agent

Theories, Architectures, and Languages.

Gertner, A., & VanLehn, K. (2000). Andes: A coached problem solving environment for

physics.

www.manaraa.com

 91

Gilbert, S., Blessing, S. B., & Kodavali, S. (2009). The Extensible Problem-Specific Tutor

(xPST): Evaluation of an API for tutoring on existing interfaces. Paper presented at

the Artificial Intelligence in Education.

Gilbert, S. B., Devasani, S., Kodavali, S., & Blessing, S. B. (2011). Easy authoring of

intelligent tutoring systems for synthetic environments. Paper presented at the

Proceedings of the Twentieth Conference on Behavior Representation in Modeling

and Simulation.

Glass, M. (2001). Processing language input in the CIRCSIM-Tutor intelligent tutoring

system. Paper presented at the Artificial Intelligence in Education.

Gorman, P. F. (1991). The future of tactical engagement simulation. In D. Pace (Ed.),

Proceedings of the 1991 Summer Computer Simulation Conference (pp. 1181-1186).

Baltimore, MD: Society for Computer Simulation.

Graesser, A. C., Chipman, P., Haynes, B. C., & Olney, A. (2005). AutoTutor: An intelligent

tutoring system with mixed-initiative dialogue. IEEE, 48(4), 612-618.

Graesser, A. C., Wiemer-Hastings, P., Wiemer-Hastings, K., Harter, D., Tutoring Research

Group, T. R. G., & Person, N. (2000). Using latent semantic analysis to evaluate the

contributions of students in AutoTutor. Interactive Learning Environments, 8(2), 129-

147.

Hamming, R. W. (1950). Error detecting and error correcting codes. Bell System Technical

Journal, 29(2), 147-160.

Johnson, W. L. (2009). A simulation-based approach to training operational cultural

competence. Paper presented at the Proceedings of ModSIM.

Kirriemuir, J., & McFarlane, A. (2004). Literature reviews in games and learning.

www.manaraa.com

 92

Kodavali, S., Gilbert, S., & Blessing, S. (2010). Expansion of the xPST framework to enable

non-programmers to create intelligent tutoring systems in 3D game environments.

Koedinger, K. R., Aleven, V., Heffernan, N., McLaren, B., & Hockenberry, M. (2004).

Opening the door to non-programmers: Authoring intelligent tutor behavior by

demonstration. Paper presented at the Proceedings of Seventh International

Conference on Intelligent Tutoring Systems, Berlin.

Koedinger, K. R., Aleven, V. A., & Heffernan, N. (2003). Toward a rapid development

environment for cognitive tutors. Artificial intelligence in education: Shaping the

Future of Learning Through Intelligent Technologies, 97, 455.

Koedinger, K. R., Anderson, J. R., Hadley, W. H., & Mark, M. A. (1997). Intelligent tutoring

goes to school in the big city. International Journal of Artificial Intelligence in

Education, 8(1), 30-43.

Koedinger, K. R., Anderson, J. R., Hadley, W. H., & Mark, M. A. (1997). Intelligent

Tutoring Goes to School in the Big City. 30-43.

Landauer, T. K., Foltz, P. W., & Laham, D. (1998). An introduction to latent semantic

analysis. Discourse processes, 25, 259-284.

Laurillard, D. (1993). Rethinking university teaching: A framework for the effective use of

educational technology: Routledge.

Lessiter, J., Freeman, J., Koegh, E., & Davidoff, J. (2001). A cross-media presence

questionnaire: The ITC-sense of presence inventory. Presence: Teleoperators and

Virtual Environments, 10(3), 282-297.

Levenshtein, V. I. (1966). Binary codes capable of correcting deletions, insertions, and

reversals. Paper presented at the Soviet Physics Doklady.

www.manaraa.com

 93

Livak, T., Heffernan, N. T., & Mover, D. (2004). Using cognitive models for computer

generated forces and human tutoring. Paper presented at the 13th Annual Conference

on (BRIMS) Behavior Representation in Modeling and SImulation, Arlington, VA.

Lloyd, J. (2004). The Torque Game Engine. Game Devel. Mag, 11(8), 8–9.

Maass, J., & Blessing, S. (2011). xSTAT: An intelligent homework helper for students. Paper

presented at the Georgia Undergraduate Research in Psychology Conference.

Mitrovic, A., Mayo, M., Suraweera, P., & Martin, B. (2001). Constraint-based tutors: A

success story. Engineering of Intelligent Systems, 931-940.

Mitrovic, A., & Ohlsson, S. (1999). Evaluation of a constraint-based tutor for a database.

International Journal of Artificial Intelligence in Education, 10(3-4), 238-256.

Murray, T. (1999). Authoring intelligent tutoring systems: An analysis of the state of the art.

International Journal of Artificial Intelligence in Education, 10(1), 98-129.

Murray, W. R. (2006). Intelligent tutoring systems for commercial games: The virtual

combat training center tutor and simulation. Paper presented at the The Second

Artificial Intelligence for Interactive Digital Entertainment Conference (AIIDE),

Marina del Rey, California.

Nevill-Manning, C. G. (1993). Programming by demonstration. New Zealand Journal of

Computing, 4(2), 15-24.

Ohlsson, S. (1996). Learning from performance errors. Psychological Review, 103(2), 241.

Polich, J. M., & Schwartz, S. H. (1974). The effect of problem size on representation in

deductive problem solving. Memory & Cognition, 2(4), 683-686.

Porter, M. F. (1980). An algorithm for suffix stripping. Program, 14(3), 130-137.

www.manaraa.com

 94

Remolina, E., Ramachandran, S., Stottler, R., & Howse, W. R. (2004). Intelligent simulation-

based tutor for flight training. Paper presented at the Proceedings of the

Industry/Interservice, Training, Simulation & Educational Conference.

Remolina, E., Ramachandran, S., Stottler, R. H., & Howse, W. R. (2004). Intelligent

Simulation-Based Tutor for Flight Training. Paper presented at the

Industry/Interservice, Training, Simulation & Education Conference (I/ITSEC),

Orlando, FL.

Ritter, S., Kulikowich, J., Lei, P., McGuire, C. L., & Morgan, P. (2007). What evidence

matters? A randomized field trial of Cognitive Tutor Algebra I, pp. 13-20.

Rowe, J. P., Shores, L. R., Mott, B. W., & Lester, J. C. (2010). Individual differences in

gameplay and learning: A narrative-centered learning perspective. Paper presented at

the Proceedings of the Fifth International Conference on Foundations of Digital

Games.

Rus, V., & Graesser, A. (2006). Deeper natural language processing for evaluating student

answers in intelligent tutoring systems. Paper presented at the American Association

for Artificial Intelligence.

Shelby, R., Schulze, K., Treacy, D., Wintersgill, M., VanLehn, K., & Weinstein, A. (2001).

An assessment of the Andes tutor. Paper presented at the Proceedings of the 2001

Physics Education Research Conference.

Stanney, K. M. (2002). Handbook of virtual environments. Mahwah, NJ: Erlbaum.

Steinhart, D. J. (2001). Summary Street: An intelligent tutoring system for improving student

writing through the use of latent semantic analysis. Unpublished Ph.D., University of

Colorado, Boulder.

www.manaraa.com

 95

Stottler, R. H. (2000). Tactical Action Officer Intelligent Tutoring System. Paper presented at

the Industry/Interservice, Training, Simulation & Education Conference (I/ITSEC),

Orlando, FL.

Stottler, R. H., Fu, D., Ramachandran, S., & Jackson, T. (2001). Applying a generic

intelligent tutoring system authoring tool to specific military domains. Paper

presented at the Industry/Interservice, Training, Simulation & Education Conference

(I/ITSEC), Orlando, FL.

Stottler, R. H., & Vinkavich, L. M. (2000). Tactical Action Officer Intelligent Tutoring

System (TAO ITS). Paper presented at the Proceedings of the Industry/Interservice,

Training, Simulation & Education Conference.

Suraweera, P., & Mitrovic, A. (2002). KERMIT: A constraint-based tutor for database

modeling.

Thissen, D., & Mislevy, R. J. (2000). Testing algorithms. In H. Wainer (Ed.), Computerized

Adaptive Testing: A Primer. Mahway, NJ: Lawrence Erlbaum Associates.

Thomas, J. M., & Young, R. M. (2009). Towards a domain-independent framework to

automate scaffolding of task-based learning in digital games. Paper presented at the

Proceedings of the 4th International Conference on Foundations of Digital Games.

VanLehn, K., Lynch, C., Schulze, K., Shapiro, J. A., Shelby, R., Taylor, L., et al. (2005). The

Andes physics tutoring system: Lessons learned. International Journal of Artificial

Intelligence in Education, 15(3), 147-204.

Whitley, K. N. (1997). Visual programming languages and the empirical evidence for and

against. Journal of Visual Languages and Computing, 8(1), 109-142.

Wing, J. M. (2006). Computational thinking. Communications of the ACM, 49(3), 33-35.

www.manaraa.com

 96

Woolf, B. P. (2008). Building intelligent interactive tutors: Student-centered strategies for

revolutionizing e-learning: Morgan Kaufmann.

Woolf, B. P., & Cunningham, P. (1987). Building a community memory for intelligent

tutoring systems.

www.manaraa.com

 97

ACKNOWLEDGEMENTS

I would like to take this opportunity to express my gratitude to those who helped me

at various stages of my research work and with the writing of this thesis. Firstly, I would like

to thank my major professor, Dr. Stephen Gilbert for his guidance and support throughout

this research and for being a wonderful mentor. He helped me realize my true passion by

introducing me to the world of Learning Sciences and Intelligent Tutoring Systems. I am

grateful to him for having sent me to several conferences and workshops, which gave me

tremendous exposure. I owe a lot to Dr. Stephen Blessing from the University of Tampa who

collaborated with us on all our publications. His suggestions and feedback were invaluable. I

would also like to thank my committee members, Dr. Leslie Miller and Dr. Craig Ogilvie, for

their guidance, encouragement, and for being very patient with me. Dr. Gregory Aist, who

is a co-author on one of my papers, gave me some great suggestions during the early stages

of my research work. Steven Ourada, the lead architect of xPST provided me with much

needed guidance and helped me get to speed. Finally, I would like to thank my peers who

provided valuable assistance while completing my research work: Munish Gopal, Suhas

Shetty, Nandhini Ramaswamy, Sateesh Kodavali, Mike Oren, Ankit Agrawal and Sugam

Sharma.

	2011
	Intelligent Tutoring System Authoring Tools for Non-Programmers
	Shrenik Devasani
	Recommended Citation

	MAIN HEADINGS

